

Oregon Department of Fish and Wildlife

Clackamas River Bull Trout Reintroduction Project: Characterizing status and thermal habitat suitability in 2018

ODFW-Native Fish Investigations and Portland General Electric (Agreement #2016-08)

Oregon Department of Fish and Wildlife prohibits discrimination in all of its programs and services on the basis of race, color, national origin, age, sex, or disability. If you believe that you have been discriminated against as described above in any program, activity, or facility, or if you desire further information, please contact ADA Coordinator, Oregon Department of Fish and Wildlife, 4034 Fairview Industrial Drive SE, Salem, OR 97302; (503)947-6000.

This material will be furnished in alternate format for people with disabilities if needed. Please call 541-757-4263 to request

ANNUAL PROGRESS REPORT FISH RESEARCH PROJECT OREGON

PROJECT TITLE: Clackamas River Bull Trout Reintroduction Project: Characterizing status and thermal habitat suitability in 2018

PROJECT NUMBER: Portland General Electric Agreement # 2016-08

PROJECT PERIOD: 2018

Prepared by: Steven J. Starcevich

Oregon Department of Fish and Wildlife 4034 Fairview Industrial Drive SE Salem, OR 97302

This project was funded in part by Portland General Electric and the ODFW-Native Fish Investigations Program

Table of Contents

Abstract
Introduction
Methods
Census redd surveys
Pinhead Creek adult monitoring
Distribution surveys
Stream temperature
Results and Discussion
Census redd surveys
Pinhead Creek adult monitoring10
Distribution surveys
Stream temperature
Monitoring in 2019
Acknowledgements
References
Appendix I
Appendix II
Appendix III

Abstract

Bull Trout were extirpated from the Clackamas River basin over forty years ago by human activities. A reintroduction feasibility assessment and an implementation plan were completed in 2007 and 2011, respectively, with the goal of establishing a self-sustaining population of 300-500 adults in the Clackamas River basin. The first phase of the project (2011-2016) involved translocating 2,836 Bull Trout from the Metolius River basin, tagging each with a passive integrated transponder (PIT) tag, releasing them in the upper Clackamas River basin, and monitoring them using a variety of methods. The second phase of the project began in 2017 with a continuing focus on monitoring progress toward the reintroduction goal, through census redd surveys, the use of PIT tag technology, eDNA surveys, and water temperature monitoring.

Adult abundance was estimated in 2017 and 2018 from PIT-tag-detected adults and untagged adults caught in the weir trap or passing through the video station. The adult abundance estimate in Pinhead Creek was 96 in 2017 and 104 in 2018. While overall abundance increased in this time period, the number of PIT-tagged adults detected peaked at 72 in 2016 and decreased to 62 in 2017 and 51 in 2018, most likely due to tag ejection in spawning females, and adult mortality. Overall, adult abundance in Pinhead Creek in 2018 was higher than 2017, but the proportional increase in abundance was lower than in previous years. This is likely related to the following factors: 1) translocations ended in 2016, 2) translocations in 2014-2016 were composed of mainly age-1 fish (with few reaching adulthood by 2018) and released relatively far from Pinhead Creek, and 3) a large influx of locally-born adults is not expected until 2021 or 2022.

The estimated redd abundance in Pinhead Creek basin increased from 16 redds in 2012 to 85 redds in 2017 and decreased to 81 in 2018. There was a strong linear relationship between the annual adult abundance estimates and census redd counts in Pinhead Creek, suggesting census redd counts continue to be a useful proxy for adult abundance in this small watershed. Most adults had entered Pinhead Creek by mid-September and were last detected by mid-October, with the redd count peaking in late September. PIT-tagged adults spent a median of 11 d in Pinhead Creek during the spawning period.

Translocated Bull Trout released at an older ages (\geq age-2) were much more likely to be detected than fish released at age-1. Fish released at age-1 contributed only 3% of all PIT-detected adults in Pinhead Creek since the project began in 2011, even though age-1 fish composed 32% of all translocations. In 2018, translocated fish released at age-1 contributed only a single adult to the total count (N=51) of PIT-detected adults in Pinhead Creek. Fish released at age-2 composed 46% of all translocated fish and 26% of all PIT-tagged adults. Fish age-3 and older composed 22% of all translocations and 71% of all adults detected in Pinhead Creek. This survival pattern hold when only data from Pinhead Creek and Last Creek are considered and suggests greater survival of older age-classes after translocation.

In the analysis of eDNA samples from 2017, Bull Trout eDNA was detected in the upper Clackamas River, Berry Creek, and Cub Creek. These detections were near release sites in 2014-2016. Since most of these fish have not yet reached adulthood, these detections suggest translocated fish are still rearing near their release points. Bull Trout eDNA was also detected in Roaring River even though there were no releases in or near this river. Temperature monitoring revealed extensive high quality thermal habitat for juvenile Bull Trout in the Clackamas River upstream of the Collawash River confluence. Highly suitable thermal habitat for spawning occurred in Pinhead Creek, Last Creek, Oak Grove Fork, Hunter Creek, Berry Creek, and reaches 1, 4, and 5 of the Clackamas River. Maximum and mean temperatures in the lower Collawash River, Hot Spring Fork, and in the Clackamas River downstream of the Collawash River confluence exceeded the criteria for thermally suitable juvenile rearing and spawning habitat.

In 2019, census spawning surveys will continue in Pinhead Creek, Last Creek, and upper Clackamas River (from Cub Creek to the first falls). Exploratory redd surveys will be added to Roaring Creek and a cold-water Clackamas River section. Snorkel surveys will occur in May in Pinhead Creek and, depending on discharge and turbidity, reach 3 of the Clackamas. Environmental DNA surveys will continue in suitable streams; a portion will be conducted during peak water temperatures in late July to focus on the juvenile rearing distribution. Temperature monitoring will continue, currently maintaining 35 temperature loggers, in the upper Clackamas River basin.

Introduction

Bull Trout (Salvelinus confluentus) was once abundant and widely distributed in the Clackamas River basin (Shively et al. 2007). Dam construction with no or inadequate fish passage facilities, overfishing, habitat alteration, and the introduction of non-native species are some of the factors that contributed to the extirpation of Bull Trout from this basin over forty years ago (Shively et al. 2007). Range-wide conservation concern and renewed local interest in this species in the 1990s led to extensive Bull Trout surveys in the Clackamas River basin, during which no remaining populations were located, and instigated efforts to reintroduce the species. These efforts produced a feasibility assessment (Shively et al. 2007) and an implementation plan (US Fish and Wildlife Service [USFWS] 2011), which provided the foundation for the methods and protocols for the reintroduction of Bull Trout. The goal of the reintroduction project was to establish a self-sustaining population of 300-500 adults in Clackamas River basin. The first phase of the project involved translocating Bull Trout from the Metolius River basin to various locations in the upper Clackamas River basin (Table 1, Figure 1) and monitoring progress toward the reintroduction goal. Translocations occurred annually from 2011 through 2016 and totaled 2,836 fish, 82% of which were age-1 or age-2 (Figure 2). Each translocated fish was given a unique passive integrated transponder (PIT) tag, and some were radio-tagged, and then monitored using radio telemetry, PIT tag detection arrays, environmental DNA (eDNA) surveys, and redd surveys. The second phase began in 2017 and entailed continued monitoring of progress toward the reintroduction goal.

Figure 1. Census survey extent for all survey years and Pinhead Creek, Last Creek, and Reach 4 of the Clackamas River and redd distribution in 2018.

Table 1. PIT-tagged Bull Trout translocated from the Metolius River basin to the Clackamas River basin in the first phase of the reintroduction project. Age-class-at-release was defined by size-at-age studies (see text) and were as follows: age-1, 70-115 mm; age-2, 116-210 mm; age-3, 211-320 mm; age-4, 321-400 mm; and age-5 and older, >400 mm. Annual translocations occurred from 2011 through 2016.

			Age (Y	ear Cl	ass)		Release Date		
Year	Release Location	1	2	3	4	≥5	Min	Max	
2011	Clackamas River	0	0	0	0	12	30-Jun	30-Jun	
	Clackamas River 1	0	0	2	10	5	30-Jun	30-Jun	
	Clackamas River 2	0	0	0	6	26	30-Jun	15-Jul	
	Last Creek	5	22	15	0	0	30-Jun	15-Jul	
	Pinhead Creek	6	10	0	0	0	21-Jul	21-Jul	
	2011 Subtotal	11	32	17	16	43			
2012	Clackamas River 1	0	0	3	6	1	14-Jun	14-Jun	
	Clackamas River 2	0	0	4	31	17	14-Jun	12-Jul	
	Last Creek	64	84	2	0	0	3-May	28-Jun	
	Pinhead Creek	226	131	0	0	0	10-May	31-May	
	2012 Subtotal	290	215	9	37	18			
2013	Clackamas River	0	0	10	23	4	6-Jun	13-Jun	
	Clackamas River 1	0	0	17	33	15	6-Jun	27-Jun	
	Last Creek	93	230	7	0	0	11-Apr	27-Jun	
	Pinhead Creek	101	179	1	0	0	2-May	30-May	
	2013 Subtotal	194	409	35	56	19			
2014	Berry Creek	152	129	0	0	0	24-Apr	29-May	
	Clackamas River 1	0	23	21	21	14	5-Jun	25-Jun	
	2014 Subtotal	152	152	21	21	14			
2015	Berry Creek	97	187	3	0	0	10-Apr	5-Jun	
	Clackamas River 1	0	3	32	45	13	15-May	5-Jun	
	2015 Subtotal	97	190	35	45	13			
2016	Clackamas River 1	0	77	77	31	10	20-May	13-Jun	
	Clackamas River 5	429	70	1	0	0	8-Apr	13-May	
	2016 Subtotal	429	147	78	31	10			
	Life Stage Total	1173	1145	195	206	117	Grand Total	2836	

Since the project began, redd surveys have been the primary method of monitoring adult abundance and distribution. From 2011 through 2014, redd surveys were conducted in Pinhead and Last creeks by an *ad hoc* multi-agency group of observers. In 2015 and 2016, the sample frame was expanded to include all potential spawning habitat in the upper Clackamas River basin and census redd surveys were conducted by a crew of five experienced observers from the Oregon Department of Fish and Wildlife (ODFW), with assistance from other agencies and volunteers. In 2017 and 2018, the redd survey sampling frame was reduced to Pinhead Creek, Last Creek, and reach 4 of the Clackamas River, which are areas where Bull Trout spawning was consistently observed in 2015 and 2016. These census surveys were conducted by three ODFW

Figure 2. Length-frequency histogram of Bull Trout captured in the Metolius River basin, PIT-tagged, and translocated to the upper Clackamas River basin, 2011-2016.

surveyors of varying experience, with additional help from experienced surveyors from the U.S Forest Service (USFS), USFWS, and Portland General Electric (PGE). The areas dropped from the census in 2017 and 2018 either were confounded by high-density Chinook Salmon (*Oncorhynchus tshawytscha*) spawning with few to no Bull Trout redds observed in previous surveys, or consisted of relatively poor spawning habitat with no redds observed previously. Bull Trout occupancy in these areas will be monitored from 2017 through 2020 using eDNA surveys. Water temperature data loggers have been used since 2015 to evaluate thermal habitat suitability throughout the upper Clackamas River basin.

In 2018, the specific objectives were to 1) characterize Bull Trout abundance using census spawning surveys in known or high potential spawning areas, 2) examine the relationship between redd counts and PIT-tagged adults detected in the Pinhead Creek watershed, 3) document juvenile Bull Trout rearing in the Clackamas River downstream of the confluence with Pinhead Creek using night snorkel surveys, 4) refine the sampling frame using water temperature data loggers to focus spawning and eDNA surveys in thermal habitat suitable for Bull Trout spawning and rearing, and 5) characterize Bull Trout distribution using eDNA surveys in potential spawning and rearing areas.

Methods

Census redd surveys

Census redd surveys were conducted in Pinhead Creek, Last Creek, and Reach 4 of the upper Clackamas River (Figure 1). Census surveys were generally completed every two weeks from August 28 to November 6, 2018 (Table 2). The first survey, conducted prior to the putative start of Bull Trout and Chinook Salmon spawning, was used to familiarize the field crew with redd identification by analyzing characteristics of old redds from a previous season (i.e., salmonid

	Census										
Reach	1	2	3	4	5	6					
Clackamas River 4	5-Sep	12-Sep	NS	NS	24-Oct	NS					
Pinhead Creek 1	28-Aug	10-Sep	24-Sep	9-Oct	23-Oct	6-Nov					
Pinhead Creek 2	29-Aug	11-Sep	25-Sep	8-Oct	22-Oct	5-Nov					
Last Creek	28-Aug	10-Sep	25-Sep	8-Oct	22-Oct	5-Nov					
Total Bull Trout redds	0	11	33	21	12	7					
Total Chinook Salmon redds	0	2	2	2	5	35					

Table 2. Census survey reaches and schedule and the number of redds counted in each census. Some reaches were not surveyed (NS) in each census.

redds constructed prior to August) and flagging areas that could be mistaken for new redds. A new Bull Trout redd was identified by its pocket-mound structure, gravel size (2-64 mm in diameter), and the contrast of brighter disturbed gravel relative to a darker surrounding matrix. Salmon redds were distinguished by their relatively large surface area and substrate size and, on occupied redds, by identifying the species of adult salmon. The crew flagged new Bull Trout redds and recorded the following data: GPS location, maximum length and width, species and number of adults occupying the redd, and brief descriptions of the redd and observer certainty.

Bull Trout and salmon redd data were entered in an Access database that contained data from previous Bull Trout spawning surveys in the upper Clackamas River basin. From 2011-2014, some spawning surveyors recorded observations of some redds described as "potential", "possible", "likely", "test dig?", or some other variant registering uncertainty in their observations; these descriptions were included in the database. From 2015-2018, observers were trained to include a brief description of, and reasons for, their certainty in each new redd identified so that an experienced surveyor could review redds identified with high uncertainty. These descriptions were entered as a comment in the database. (See Appendix I for dataset from 2018.)

Pinhead Creek adult monitoring

The use of Pinhead Creek by PIT-tagged fish was monitored with a 4-antenna PIT tag array installed near the creek's confluence with the Clackamas River. The USFWS has usually activated the array in June and the maintained it through November. PIT tag detection data from Pinhead Creek were used to describe the annual number, duration, timing, age-at-release, and release location of PIT-tagged adults present in Pinhead Creek during the spawning season.

From 2011 through 2016, as a relative measure of annual abundance, age-5 and older fish (hereafter referred to as "adults") detected at the PIT array were counted by year. This age cutoff was used because migratory Bull Trout in the Metolius River basin are thought to begin to mature at age-5 (Ratliff et al. 1996), which is similar to Bull Trout populations in other basins. For example, a study in the Lake Pend Oreille basin showed that at least 50% of age-5 Bull Trout had reached adulthood (McCubbins et al. 2016). In a study in the Flathead Lake basin, Bull Trout first matured at age-5 and all individuals age-6 and older were mature (Fraley and Sheppard 1989). To count the number of PIT-tagged adults using Pinhead Creek annually, age-class at detection was approximated. Age-class at release was approximated for age-1 and age-2

fish based on a length-frequency histogram of translocated fish (Figure 2) and length-at-age studies of Bull Trout throughout their range (see Fraley and Sheppard 1989, Ratliff et al. 1996, and Salow 2004). Age was approximated as follows: age-1, 70-115 mm; age-2, 116-210 mm; age-3, 211-320 mm; age-4, 321-400 mm; and age-5 and older, >400 mm. Age-class at detection was estimated by summing age-class at release and the interval between the date of release in the Clackamas River basin and date of detection in Pinhead Creek. More specifically, to estimate the annual number of PIT-tagged Bull Trout age-5 or older detected in Pinhead Creek, the following detection intervals were used: >1,360 d (i.e., 3 yr and 265 d) for age-1 at release, >995 d for age-2, >630 d for age-3, >265 d for age-4, and >0 d for age-5 and older.

In 2017 and 2018, along with the PIT tag detection array, a weir trap and video monitoring station were installed and maintained by the USFWS in Pinhead Creek about 250 m upstream from the confluence with the Clackamas River. Trapping results in 2017 showed that 45% of female adults and 8% of males did not have PIT tags (Barrows et al. 2018). Since female salmonids tagged in the body cavity are known to be more likely than males to eject their tags during spawning (Meyer et al. 2011, Mamer and Meyer 2016), the discrepancy between sexes likely resulted from higher rates of tag ejection by females. Another potential source of untagged adults was from locally-born offspring of translocated Bull Trout surviving to adulthood. Considering these sources of untagged adults, an accurate count of adults using Pinhead Creek during the spawning season could not rely solely on PIT tag detections. Therefore, the annual adult count in these years was composed of two sources: 1) unique PIT-tagged adults detected at the PIT tag array (installed at the weir site in 2018) and the weir trap, and 2) unique untagged adults identified at the trap or moving upstream through the video station (Barrows et al. 2018).

Simple linear regression was used to assess the relationship of the annual adult count in Pinhead Creek (the explanatory variable, X), and the annual count of Bull Trout redds in Pinhead and Last creeks (the response variable, Y), from 2011-2018 (Ramsey and Schafer 1997). The simple linear regression model used is as follows: $\mu\{Y|X\} = \beta_0 + \beta_1 X$. The parameter β_0 is the y-intercept of the line. The parameter β_1 represents the slope of the line.

Duration of detection of PIT-tagged adult Bull Trout in Pinhead Creek was calculated as the number of days between the first detection and last detection of each fish at the Pinhead Creek PIT array (2011-2018) or trap (2017-2018) in a single monitoring season. Duration was summarized by year but excluded individuals detected for ≤ 1 d. This exclusion attempted to reduce, likely without eliminating, the influence of short-term non-spawning use, and tag ejections and mortalities upstream of the array, on the estimated duration of adults in Pinhead Creek. Timing of adult use of Pinhead Creek was represented by boxplots of first and last detections of individuals for each annual monitoring season.

The annual count of PIT-tagged adults was plotted by release location and age-at-release. Ageat-release class was assigned to translocated fish by the five size classes described above and then linked by PIT-tag code to each adult detected in Pinhead Creek. To evaluate the relationship between PIT-tagged adults in Pinhead Creek and their age-at-release, adults were counted by the five age-at-release classes and each class was compared to the total number of PIT-tagged adults detected in Pinhead Creek (N=215). These adult ratios (i.e., individual age-at-release classes to total adults) were also compared to those of translocated fish.

Distribution surveys

Night snorkeling and eDNA surveys were used to determine Bull Trout distribution in this study area. A single snorkel survey was conducted by a 4-person crew on September 24-25 between 10 PM and 2 AM. The survey covered 500 m within reach 1 of the Clackamas River (commonly known as Big Bottom). Each snorkeler used a dive light and all habitat within the main channel of this multi-channel reach was snorkeled.

The eDNA surveys were conducted according to the field collection protocol and sampling equipment recommended by Carim et al. (2016). A peristaltic pump (Geopump, Geotech, Colorado, USA) was powered by a lithium ion battery. At each study site, the pump pulled 5 L of stream water through a 1.5- μ m-pore fiberglass filter. The filters were immediately stored in a plastic bag with silica desiccant. Within 10-48 hours, these samples were placed in a –20 °C freezer for storage until analysis by the National Genomics Center for Fish and Wildlife Conservation (USFS Rocky Mountain Research Station, Fort Collins, Colorado).

Candidate eDNA survey streams were classified by two priority levels for monitoring for Bull Trout distribution. High priority streams were known to be thermally suitable (i.e., <16 °C maximum), lacking fish barriers, and within the suitable patches identified in the reintroduction feasibility study (Shively et al. 2007). Second priority streams, outside of known suitable thermal patches, were identified through historical anecdotes as occupied streams (Shively et al. 2007). All high priority streams were surveyed and second priority streams will be surveyed for eDNA in the future, if thermal habitat monitoring shows these areas to be suitable.

Probability of detection of fish present in the stream is positively related to fish density and negatively related to stream discharge (Wilcox et al. 2016). The minimum number of sample sites to reach a detection probability greater than 0.85 in a survey stream was calculated using baseflow discharge estimates and an assumed density of 1 Bull Trout per 100m, using parameterized models from Wilcox et al. (2016). Sites were allocated systematically every 2 km to Cub Creek, Berry Creek, and the upper Clackamas River reaches to determine presence and distribution of Bull Trout in tributaries where Bull Trout were previously translocated.

The National Genomics Center (NGC) for Wildlife and Fish Conservation (U.S. Forest Service, Rocky Mountain Research Station, Missoula, MT) conducted the analysis of the 2017 eDNA samples. At the NGC, samples were stored at -20 °C until analysis. The extraction of eDNA followed a modified protocol described in Franklin et al. (2019). All samples were analyzed for Bull Trout eDNA markers developed at the NGC (Dysthe et al. 2018). Each sample was analyzed in triplicate on a StepOne Plus qPCR Instrument (Life Technologies) or a QuantStudio 3 qPCR System (Life Technologies). A sample was considered positive for the presence of the target species if at least one of the three qPCR reactions amplified DNA of that species. According to Jennifer Hernandez, NGC eDNA Program Coordinator, all reactions included an internal positive control to ensure that the reaction was effective and sensitive to the presence of Bull Trout DNA and all laboratory experiments were conducted with negative controls to insure there was no contamination during DNA extraction or qPCR setup.

Thermal suitability	Summer max	<u>imum (°C)</u>
High	≤16	≤12
Medium	>16 to ≤19	>12 to ≤16
Low	>19	>16

Table 3. Stream temperature metrics used to delineate Bull Trout habitat patches (from Isaak et al. 2009). Italicized temperatures are delineations for Bull Trout patches with sympatric Redband Trout reported in Haas (2001).

Stream temperature

Digital temperature data loggers (OnsetTM Hobo Water Temp Pro v2 U-22) were set to record stream temperature every 30 minutes and deployed in 35 locations in the upper Clackamas River basin by June, 2018. Of these, 30 were successfully downloaded between late September and early November, 2018. Five loggers were lost because of bed scour or human tampering, three of which were replaced in a more secure nearby location. Data were discarded from one data logger (in Berry Creek) because it was exposed to air. An additional three data loggers were deployed during this time period. Juvenile rearing habitat was evaluated with two maximum daily temperature criteria used to delineate suitable habitat patches (Table 3). Bull Trout are generally thought to initiate spawning when stream temperature declines below 9 °C (McPhail and Murray 1979; Weaver and White 1985; Fraley and Shepard 1989; Kitano 1994). More specifically, Bull Trout initiated spawning at mean daily stream temperatures between 9.3 and 11.5 °C in Pine Creek, Oregon (Chandler et al. 2001), and 9.4 and 11.7 °C in the Lostine River, Oregon (Howell et al. 2010). As peak Bull Trout spawning in Pinhead Creek and elsewhere in northeast Oregon (Starcevich et al. 2012) generally occurs in September, we used mean daily temperatures of <9 °C, 9-12 °C, >12 °C in early September to respectively classify spawning habitat as high, medium, and low thermal suitability (Starcevich et al. 2017).

Results and Discussion

Census redd surveys

In census redd surveys, we identified 81 putative Bull Trout redds in Pinhead Creek and Last Creek (Figure 3, Table 4) and 3 redds in reach 4 of the upper Clackamas River (Figure 1, Table 4, Appendix I). This represented a 5% decrease in the census count relative to 2017 and was the first decline since 2013. The first Bull Trout redd was observed in early September and 77% of the redds were counted by early October (Table 2). Bull Trout were seen actively spawning on or occupying only a single redd (1% of total).

Since 2014, the highest census redd count at the reach-level alternated between reaches 1 and 2 of Pinhead Creek; this year reach 1 had the highest count (Figure 3, Table 4). This spatiotemporal pattern may be indicative of an adult cohort that spawns every other year (i.e., in alternate years). However, based on an evaluation of annual PIT-tag detections, 94% of adults were detected entering Pinhead Creek in consecutive years. There have been 189 PIT-tagged adults detected in Pinhead Creek from 2014 through 2018, and 71 (38%) of these have been detected in more than one year (Appendix II). Of these, 67 adults were detected in consecutive years and composed 94% of repeat annual detections (N=160). Only 4 adults were detected in Pinhead Creek in alternate years and their small number of annual detections (N=11) does not correspond to the magnitude of the alternating spatial pattern of spawning, which on average changes annually 25% (range, 12-32%; Table 4). Since some adults may be entering Pinhead Creek briefly without spawning or for reasons other than spawning (e.g., thermoregulation), it is unknown if PIT-tag detections alone can accurately assess repeat spawning characteristics. Direct information on individual spawning maturity is needed for this assessment.

Figure 3. Georeferenced redds in Pinhead Creek and Last Creek from 2012-2018. Redds were georeferenced in secondary channels; these channels are not shown on this map.

				Bı						
Stream	Reach	2011	2012	2013	2014	2015	2016	2017	2018	Riverscape marks
Pinhead Creek	1	3	9	10	21	13	34	33	57	To Last Cr
Pinhead Creek	2	2	5	2	14	34	25	40	23	Last Cr - FS140 Rd
Last Creek	1	0	2	3	2	0	3	12	1	To Camp Cr
Clackamas River	1	NS	NS	NS	NS	2	0	NS	NS	Big Bottom - Pinhead
Clackamas River	2	NS	NS	NS	NS	5	2	NS	NS	Pinhead - Lowe Cr.
Clackamas River	3	NS	NS	NS	NS	2	0	NS	NS	Lowe Cr Cub Cr.
Clackamas River	4	NS	NS	1	NS	2	4	4	3	Cub Cr First falls
Clackamas River	5	NS	NS	NS	NS	0	NS	NS	NS	First falls - Ollalie Cr.
Oak Grove Fork	1	NS	NS	2	NS	1	0	NS	NS	First 2.5 km
Lowe Creek	1	NS	NS	NS	NS	0	0	NS	NS	First 1 km
Rhododendron Cr.	1	NS	NS	NS	NS	0	0	NS	NS	First 1 km
Hunter Creek	1	NS	NS	NS	NS	0	0	NS	NS	First 1.5 km
Cub Creek	1	NS	NS	NS	NS	0	0	NS	NS	To Berry Cr.
Cub Creek	2	NS	NS	NS	NS	0	NS	NS	NS	2.5 km from Berry Cr.
Berry Creek	1	NS	NS	NS	NS	0	0	NS	NS	First 3 km
TOTAL		5	16	18	37	59	68	89	84	

Table 4. Bull Trout redds counted during census surveys in the upper Clackamas River basin, 2011-2018. In certain years, some stream reaches were not surveyed (NS).

In Pinhead and Last creeks, 46 Chinook Salmon redds were counted (Figure 3, Appendix I). The first salmon redd was observed in early September and salmon spawning increased substantially in late October (Table 2). Chinook Salmon were observed actively spawning on or occupying 9 redds (20% of total). Most Bull Trout redds had been identified prior to the increase in salmon spawning in Pinhead Creek, which decreases the influence of salmon redds as a confounding factor.

Pinhead Creek adult monitoring

The number of translocated PIT-tagged Bull Trout adults detected in Pinhead Creek during the spawning season steadily increased from 20 adults in 2013 to a peak count of 72 in 2016 (Table 5). Since then, the count of translocated PIT-tagged adults declined to 62 in 2017 and 51 in 2018 (Table 5). This decline was expected given that translocations ended in 2016 and adults may eject their tag, or experience natural mortality.

When the adult count included both tagged and untagged adults, the adult abundance estimate in Pinhead Creek was 96 in 2017 and 104 in 2018 (Table 5; Barrows et al. 2018, 2019), which represented an annual increase of 33% and 8% in respective years. The decline in the rate of increase could be attributable to at least four factors. First, translocations ended in 2016; therefore, unlike previous years, no translocated adults were added in 2017 and 2018. Second, from 2014 through 2016, most of the translocations occurred in Berry Creek and reach 5 of the Clackamas River. These are thermally suitable rearing areas, which decreases the need for dispersal in search of better thermal habitat. They are also relatively far from Pinhead Creek, which likely prolongs their discovery and use of Pinhead Creek. Third, most of these fish were released at age-1 and have not yet reached adulthood (i.e., < age-5 in 2018). If these fish survive

to adulthood and cannot find suitable spawning habitat near their release location, they may contribute to the Pinhead Creek adult count in the future. Finally, the main assumption of this project is that translocated fish will produce locally-born offspring that reach adulthood and eventually supplant out-of-basin adults, thereby becoming a self-sustaining population. This expected influx of locally-born adults may still be a couple of years away because the fish born from the 5 redds counted in Pinhead Creek in the first year of the project would be age-0 in 2012 and, provided some of this cohort survives to adulthood, age-6 in 2018. Given the low redd and adult counts in 2011 through 2013, one would expect the locally-born adult cohort of 2018 to be small. The redd and adult count in Pinhead Creek increased substantially in 2014 and 2015 (Table 5 and 6); the adult (i.e., age-6) cohorts from these redds are not expected to contribute to the adult population until 2021 and 2022, respectively.

Table 5. Census survey redd counts in relation to the number of adult Bull Trout (i.e., age-5 and older) detected in Pinhead Creek and the estimated duration PIT-tagged adults spent in this watershed. From 2011-2016, the count was composed of only translocated PIT-tagged adults. In 2017-2018, the count was composed of tagged and untagged adults detected at the PIT-tag array, caught in the weir trap, or observed passing upstream through the video station. (The number and percent annual change of translocated PIT-tag adults in 2017-2018 are in parentheses.) Adulthood was defined as fish estimated to be \geq age-5. Duration was defined as the number of days between the first and last detection (>1 day) at the PIT array in Pinhead Creek.

	Censu	s Survey	PIT/7	Γrap/Video	D	uration	
Year	Redds	Annual Change	Adults	Annual Change	Median	Min	Max
2011	5	NA	19	NA	26	3	78
2012	16	220%	17	-11%	35	12	55
2013	15	-6%	20	18%	26	3	68
2014	37	147%	35	75%	13	2	93
2015	47	27%	53	51%	18	2	87
2016	62	32%	72	36%	26	3	88
2017	85	37%	96 (62)	33% (-14%)	16	2	91
2018	81	-5%	104 (51)	8% (-18%)	11	2	47

Table 6. Age-class and release location of all PIT-tagged Bull Trout detected in Pinhead Creek during the spawning season. Age-class was approximated from their age at release and the number of days between their release and detection dates (see text for more details). PIT-tagged fish were not released in every year in each location (represented by NAs).

		Aş	ge (yr))				Releas	e Location			
Year	≥5	4	3	2	1	Lower Clackamas River	Clackamas Reach 1	Pinhead/Last creeks	Pinhead Creek Trap	Clackamas Reach 2	Clackamas Reach 5	Berry Creek
2011	19	1	3	8	0	6	2	11	NA	12	NA	NA
2012	17	2	3	2	7	1	2	13	NA	15	NA	NA
2013	20	1	16	177	9	0	4	205	NA	14	NA	NA
2014	35	12	21	17	5	6	16	38	NA	9	NA	21
2015	53	32	2	2	1	9	30	41	NA	5	NA	5
2016	72	5	2	0	0	0	29	44	NA	2	0	4
2017	68	1	2	3	0	1	29	32	6	0	3	3
2018	60	2	0	0	0	0	34	16	9	1	0	2

There was a strong linear relationship (Y=0.85X - 0.92, R²=0.96, P-value<0.001) between the number of adults detected (x) and the annual census redd count (y) in Pinhead Creek (Figure 4). The relationship of 1.3 adults per redd in 2018 was similar to previous years (mean, 1.1; range, 0.9-1.3; 2012-2017). Although the adult-to-redd ratio was low relative to other Bull Trout populations (see Howell and Sankovich 2012), the census redd count continued to be a useful monitoring tool because it was a consistent proxy for adult abundance in the Pinhead Creek watershed.

Figure 4. Annual number of Bull Trout redds counted in Pinhead and Last creeks as a function of the annual number of adult Bull Trout (i.e., age-5 and older) detected entering Pinhead Creek during the spawning period. From 2011-2016, the adult count consisted of PIT-tagged adults detected at the PIT array (solid circles). In 2017 and 2018, the adult count consisted of an adult estimate from the weir trap, video station, and PIT-tag detections. The line and its equation were estimated using simple linear regression.

Figure 5. Timing of first and last detection of PIT-tagged Bull Trout, age-5 and older, at the PIT array near the mouth of Pinhead Creek. The boxplot displays a median line and two middle quartile boxes; the whiskers are defined as 1.5*interquartile range (IQR), outliers are beyond this spread, and together they represent the early and late quartiles. PIT-tagged adults detected ≤ 1 d were not included in timing analyses.

In 2018, 75% of PIT-tagged adults were first detected in Pinhead Creek by September 12 and the last PIT-tag detection was on October 6 (Figure 5), which corresponded to the spawning peak observed during redd surveys (Table 2). PIT-tagged adults generally spent 11-35 d in Pinhead Creek during the spawning season (Table 5). Similar to previous years, this timing information suggests that Bull Trout likely have completed spawning by mid-October; however, in 2018, 19 Bull Trout redds were counted in late October and early November (Table 2). This mismatch in the timing of spawning and the redd count, which occurred in every year since 2015, has at least two potential explanations. First, these late-identified Bull Trout redds may have been missed during previous surveys. Pinhead Creek has a large amount of instream wood and several multichannel reaches, which are factors that can increase the probability of observers missing new redds during an individual survey. However, the protocol of repeating the census survey every two weeks is used expressly to correct these errors of omission in subsequent surveys. Second,

small salmon redds and test digs may have been misidentified. The potential influence of this confounding factor was greatest during the last round of census surveys when salmon spawning increased dramatically (Table 2); however, misidentification may be unlikely because of interspecific size differences in redd dimensions and spawning gravel and the relatively high frequency in which Chinook adults were observed on redds.

PIT-tagged Bull Trout detected in Pinhead Creek in 2018 consisted of 2 fish age-4 fish and 60 age-5 or older (Table 6). Their release locations were mainly in reach 1 of the Clackamas River and Pinhead and Last creeks and included two fish released as far away as Berry Creek (Table 6). At the Pinhead Creek weir trap, 6 adults were tagged in 2017 and 5 in 2018 (Barrows et al. 2018). These adults provide an additional source of PIT tag detections in Pinhead Creek and added 9 to the adult count in 2018 (Table 6).

PIT-tagged adults detected in Pinhead Creek in 2018 were mainly released as age-2 or older translocated fish (Figure 6). The apparent peak in the number of released-at-age-2 adults in Pinhead Creek was in 2016 (Figure 6). Relative to older age-at-release classes, the steep decline in subsequent years was likely influenced by higher tag ejection rates because the small size of age-2 fish necessitated intraperitoneal tag insertion, which has a substantially lower rate of tag retention than insertion in the dorsal musculature (Mamer and Meyer 2016). Among the 13 fish that were PIT-tagged and released at age-5 and older, 9 were tagged at the Pinhead Creek weir trap (Figure 6).

Figure 6. Age class at which PIT-tagged Bull Trout were released into the upper Clackamas River basin and subsequently detected at the Pinhead Creek PIT-array prior to and during the spawning season as adults (i.e., age-5 and older).

Figure 7. Comparison of the ratio of adult PIT-tagged Bull Trout detected in Pinhead Creek by age-at-release classes to the total number of adults detected in Pinhead Creek (N=215) and the ratio of translocated fish by age-at-release classes to the number of all translocated fish (N=2,336). (Fish translocated to reach 5 of the Clackamas River in 2016 were omitted because none was estimated to be age-5 or older in 2018.)

Pinhead Creek has emerged as the primary spawning area and attracted spawning adults from most of the areas where Bull Trout were translocated (Table 6). This makes the Pinhead Creek weir and PIT-tag detection array a good place to evaluate the relationship between translocation age-at-release and eventual recruitment to adulthood. For all translocations (except for reach 5 of the Clackamas River in 2016), fish released at age-1 contributed only 3% of all PIT-detected adults in Pinhead Creek since translocations and monitoring began in 2011 (Figure 7). The small contribution to adult abundance is surprising given that age-1 fish composed 32% of all translocated fish (Figure 7). In 2018, translocated fish released at age-1 contributed only a single adult to the total count (N=51) of PIT-detected adults in Pinhead Creek. Fish released at age-2, which composed 46% of all translocated fish, contributed 26% of all PIT-tagged adults detected in Pinhead Creek (Figure 7). This suggests that fish translocated at age-2 have had substantially higher survival to adulthood than age-1 fish. (These percentages do not include fish translocated to reach 5 of the Clackamas River in 2016 because none of these fish would have been age-5 or older by 2018.) When only data from Pinhead Creek and Last Creek are considered, the same survival patterns were observed. From 2011 through 2013, 495 age-1 and 656 age-2 fish were released in these creeks (Table 1, Appendix III), all of which would have reached adulthood by 2018. Of these, 7 (1%) released at age-1 and 50 (8%) released at age-2 have been detected returning as adults to Pinhead Creek (Appendix III). Older translocated fish contributed a disproportionate number of adults to the Pinhead Creek spawning population relative to how many were translocated. Age-3 fish composed 8% (N=194) of all translocated fish and 16% (N=34) of all adults detected in Pinhead Creek. Fish age-4 and older composed 14% (N=323) of translocations and 55% (N=118) of all adults.

Figure 8. Environmental DNA survey results from 2017 and survey sites in 2018. Candidate streams were identified to be thermally suitable and lacking fish barriers or through historical anecdotes of Bull Trout presence.

Distribution surveys

In a 500 m snorkel survey of reach 1 of the Clackamas River, we observed no juvenile Bull Trout, two adult Bull Trout, and high densities of juvenile Chinook Salmon. To date, no juvenile Bull Trout have been observed during juvenile fish surveys in 2016 (see Barrows et al. 2017), young-of-the-year surveys in the lateral habitat of Pinhead Creek in 2017, and snorkel surveys in Pinhead Creek in 2016 and 2017. This is surprising given that much smaller spawning populations in Oregon produce offspring that are readily detected during night snorkel surveys (e.g., Starcevich et al. 2017). The lack of detection of juvenile Bull Trout in Pinhead Creek is further puzzling because viable alevins and nearly-emergent fry were observed in two redds in Pinhead Creek in 2018 (Barrows et al. 2018) and some translocated fish released at age-1 and age-2 in Pinhead Creek survived to adulthood, both of which suggest there should be at least some survival of locally-born juvenile fish.

In the analysis of eDNA samples from 2017, Bull Trout eDNA was detected at all six sites sampled in the upper Clackamas River and only at the three sites on Berry Creek and Cub Creek that were closest to the release location in Berry Creek (Figure 8). The translocation releases in Berry Creek occurred in 2014 and 2015 and in the upper Clackamas River in 2016. Most of these fish were age-1 at release and had not yet reached adulthood in 2018. These eDNA detection results suggest that these translocated fish are still rearing near their release points.

Bull Trout eDNA was detected at both sites sampled in Roaring River (Figure 8). There were no translocation releases in or near this river. The timing of these samples (surveyed in late September) was close to the peak of spawning in Pinhead Creek. Bull Trout may be spawning in Roaring River and the eDNA could be from adults or their offspring; it also could be from temporary occupancy by foraging subadults or adults. Bull Trout eDNA was not detected at either site sampled in Oak Grove Fork even though it is situated closer to translocation release points and colder than Roaring River. The results from Rhododendron, Lowe, Pot creeks suggest Bull Trout are not using them. These streams may be too small (1-3 m wide) to support Bull Trout rearing or spawning. Bull Trout eDNA was not detected upstream of the culvert in Pinhead Creek. In regard to these results, it is important to acknowledge that false positives and negatives are possible. The following steps were taken to reduce the chance of false results: 1) the field crew received extensive training in eDNA protocols, which are designed to prevent contamination by the crew, and these protocols were assiduously followed; 2) survey sites were allocated to ensure detection probabilities for individuals streams were over 0.85; 3) eDNA surveys were conducted prior to spawning surveys or temperature logger maintenance in any given location to ensure samples sites were not contaminated by the crew; and 4) high priority streams are sampled annually, which allows us to evaluate the consistency of results.

In 2018, eDNA surveys were conducted to determine the presence of Bull Trout rearing in Roaring River, Oak Grove Fork, Lowe Creek, Rhododendron Creek, Hunter Creek, Cub Creek, Berry Creek, and upper Clackamas River (Figure 8). These samples will be analyzed in 2019.

Stream temperature

Continuous water temperatures were recorded on 30 data loggers distributed throughout the upper Clackamas River and Collawash River basins (Figure 9, left panel). Maximum temperatures in the lower Collawash River, Hot Spring Fork, and in the Clackamas River downstream of the Collawash River confluence were between 17.0-21.5°C, which exceeded the

16°C juvenile rearing criterion for suitable thermal habitat. Upstream of this confluence, maximum temperatures in the Clackamas River and its tributaries were below the 16°C criterion. As maximum temperature increases above this temperature criterion, the occupancy probability of juvenile Bull Trout decreases in these thermal habitat patches (Isaak et al. 2009); as temperatures decrease below this threshold, the probability of occupancy increases (Isaak et al. 2009, Dunham et al. 2003). Using this thermal suitability scale, highly suitable habitat was present in Pinhead Creek, Last Creek, and reaches 4 and 5 of the Clackamas River. Habitat with moderately high suitability for juvenile rearing included Oak Grove Fork, Hunter Creek, Berry Creek and reaches 1 and 3 of the Clackamas River.

Thermal suitability for spawning has not been defined as precisely as it has for rearing habitat (Starcevich et al. 2017). Thermal suitability descriptions in this report were based on criteria derived from two case studies conducted in Oregon (see Chandler et al. 2001, Howell et al. 2010), which are among the few studies that reported the temperature metric used to describe the initiation of spawning. Highly suitable thermal habitat for spawning (i.e., <9°C daily mean in early September) occurred in Pinhead Creek, Last Creek, Oak Grove Fork, Hunter Creek, Berry Creek, and reaches 1, 4, and 5 of the Clackamas River (Figure 7, right panels). Moderately suitable thermal habitat for spawning (i.e., <12°C daily mean in early September) occurred in Lowe Creek and reach 2 of the Clackamas River. Cub Creek and reach 3 of the Clackamas River were likely near the moderate-to-high suitability borderline, but the data loggers at these sites were lost. The Collawash River basin did not contain any suitable thermal habitat for spawning; however, water temperature in the upper section of this river has not been monitored. To correct this monitoring gap, data loggers were placed in 2018 in the upper Collawash River. Low quality spawning habitat occurred in the Collawash River basin, the Clackamas River downstream of the Collawash River, lower Roaring Creek, and Lowe Creek.

Monitoring in 2019

Census spawning surveys will continue in Pinhead Creek, Last Creek, reach 4 of the Clackamas River (Cub Creek to the first falls). Based on eDNA results and an anecdotal observation by ODFW salmon spawning surveyors, exploratory redd surveys will be added to Roaring Creek and the upper section of reach 3 of the Clackamas River (Rhododendron Creek to Cub Creek). Snorkel surveys will occur in May in Pinhead Creek and, depending on discharge and turbidity, reach 3 of the Clackamas. Environmental DNA surveys will continue in suitable streams; a portion of them will be conducted during peak water temperatures in late July to focus on the juvenile rearing distribution. Temperature monitoring will continue in the upper Clackamas River basin. We currently are maintaining 35 temperature loggers.

Acknowledgements

Thanks to Jesse Fritz and Buddy Phibbs (ODFW) for conducting most of the eDNA and spawning surveys; Jack Williamson (USFS), Chris Allen and Courtney Newlon (USFWS), Margaret David and Seth Webster (PGE), and Matt Costello (volunteer) for assistance with surveys; Brian Davis and Marshal Barrows (USFWS) for providing PIT tag, trap, and video data from Pinhead Creek; Alexis Harrison and Stephanie Gunckel for helpful review of an earlier draft; and PGE for project funding (No. 2016-08).

References

- Barrows, M. G., B. Davis, J. Harris, E. Bailey, M. L. Koski and S. Starcevich. 2017. Clackamas River Bull Trout Reintroduction Project, 2016 Annual Report. U.S. Fish and Wildlife Service and Oregon Department of Fish and Wildlife.
- Barrows, M. G., B. Davis, J. Harris, E. Bailey, M. L. Koski and S. Starcevich. 2018. Clackamas River Bull Trout Reintroduction Project, 2017 Annual Report. U.S. Fish and Wildlife Service and Oregon Department of Fish and Wildlife.
- Barrows, M. G., J. M. Hudson, K. Hauser. 2019. Clackamas River Bull Trout Reintroduction Project, 2018 Annual Report. U.S. Fish and Wildlife Service, Columbia River Fish and Wildlife Conservation Office, Vancouver, Washington.
- Carim, K. J., K. S. McKelvey, M. K. Young, T. M. Wilcox, and M. K. Schwartz. 2016. A Protocol for Collecting Environmental DNA Samples From Streams (August).
- Chandler, J.A., M.A. Fedora, and T.R. Walters. 2001. Pre- and post-spawn movements and spawning observations of resident Bull Trout in the Pine Creek watershed, eastern Oregon. In M.K. Brewin, A.J. Paul, and M. Monita, editors. Bull trout II conference proceedings. Trout Unlimited Canada, Calgary, Alberta. Pages 167-172.
- Dunham, J., B. Rieman, and G. Chandler. 2003. Influences of temperature and environmental variables on the distribution of Bull Trout within streams at the southern margin of its range Margin. North American Journal of Fisheries Management 23:894–904.
- Dysthe, J. C., T. W. Franklin, K. S. McKelvey, M. K. Young, M. K. Schwartz. 2018. An improved environmental DNA assay for Bull Trout (*Salvelinus confluentus*) based on the ribosomal internal transcribed spacer I. PLoS ONE 13(11): e0206851.
- Fraley, J. J., and B. B. Shepard. 1989. Life history, ecology and population status of migratory Bull Trout (*Salvelinus confluentus*) in the Flathead Lake and River System, Montana. Northwest Science 63(4).
- Franklin, T. W., K. S. McKelvey, J. D. Golding, D. H. Mason, J. C. Dysthe, K. L. Pilgrim, J. R. Squires, K. B. Aubry, R. A. Long, S. E. Greaves, C. M. Raley, S. Jackson, P. MacKay, J. Lisbon, J. D. Sauder, M. T. Pruss, D. Heffington, and M. K. Schwartz. 2019. Using environmental DNA methods to improve winter surveys for rare carnivores: DNA from snow and improved noninvasive techniques. Biological Conservation 229:50-58.
- Haas, G. R. 2001. The mediated associations and preferences of native Bull Trout and Rainbow Trout with respect to maximum water temperature, its measurement standards, and habitat in Bull Trout II Conference Proceedings, pages 53–55. Editors, Brewin, M.K., A.J. Paul, and M. Monita.
- Howell, P. J., and P. M. Sankovich. 2012. An evaluation of redd counts as a measure of Bull Trout population size and trend. North American Journal of Fisheries Management 32(1):1–13.
- Isaak, D., B. Rieman, and D. Horan. 2009. A watershed-scale monitoring protocol for Bull Trout. General Technical Report RMRS-GTR-224. Fort Collins, CO.
- Kitano, S., K. Maekawa, S. Nakano, and K. D. Fausch. 2017. Spawning behavior of Bull Trout in the Upper Flathead Drainage, Montana, with special reference to hybridization with Brook Trout. Transactions of the American Fisheries Society 123:988-992.
- Mamer, E. R. J. M., and K. A. Meyer. 2016. Retention rates of passive integrated transponder tags, visible implant elastomer tags, and maxillary marks in wild trout. North American Journal of Fisheries Management 36:1119–1124.

- McCubbins, J. L., M. J. Hansen, J. M. Dos Santos, and A. M. Dux. 2016. Demographic characteristics of an adfluvial Bull Trout population in Lake Pend Oreille, Idaho. North American Journal of Fisheries Management 36:1269–1277.
- McKelvey, K. S., M. K. Young, W. L. Knotek, and K. J. Carim. 2016. Sampling large geographic areas for rare species using environmental DNA : a study of Bull Trout *Salvelinus confluentus* occupancy in western Montana. Journal of Fish Biology 88:1215–1222.
- McPhail, J. D., and C. B. Murray. 1979. The early life-history and ecology of Dolly Varden (Salvelinus malma) in the Upper Arrow Lakes.
- Meyer, K. A., B. High, N. Gastelecutto, E. R. J. Mamer, and F. S. Elle. 2011. Retention of passive integrated transponder tags in stream-dwelling rainbow trout. North American Journal of Fisheries Management 31:236–239.
- Quinn, T. P. 2005. The behavior and ecology of Pacific salmon and trout. University of Washington Press, Seattle, Washington.
- Ramsey, F.L., and D.W. Schafer. 1997. The statistical sleuth: a course in methods of data analysis. Wadsworth Publishing Company, Belmont, CA, 742 pps.
- Ratliff, D. E., S. L. Thiesfeld, W. G. Weber, A. M. Stuart, M. D. Riehle, and D. V. Buchanan. 1996. Distribution, life history, abundance, harvest, habitat, and limiting factors of Bull Trout in the Metolius River and Lake Billy Chinook, Oregon, 1983-94. Portland, Oregon.
- Salow, T. D. 2004. Population structure and movement patterns of adfluvial Bull Trout (*Salvelinus confluentus*) in the North Fork Boise River Basin, Idaho. Master's thesis, Boise State University. Boise, Idaho.
- Shively, D., C. Allen, T. Alsbury, B. Bergamini, B. Goehring, T. Horning, and B. Strobel. 2007. Clackamas river Bull Trout reintroduction feasibility assessment. Published by USDA Forest Service, Mt. Hood National Forest; U.S. Fish and Wildlife Service, Oregon State Office; and Oregon Department of Fish and Wildlife, North Willamette Region. December, 2007.
- Starcevich S.J., P.J. Howell, and S.G. Jacobs. 2012. Seasonal movement and distribution of fluvial adult Bull Trout in selected watersheds in the Mid-Columbia River and Snake River basins. PLoS ONE 7(5): e37257. doi:10.1371/journal.pone.0037257.
- Starcevich, S., E.J. Bailey, and M.H. Meeuwig. 2017 Bull Trout conservation and recovery in the Odell Lake Core Area: Adult status in Trapper Creek and thermal and physical habitat suitability in 2016. ODFW Progress Report, Corvallis Research Lab, Native Fish Investigations Program.
- USFWS 2011. Clackamas River Bull Trout reintroduction implementation, monitoring, and evaluation plan. Oregon. Portland, Oregon, Oregon Fish and Wildlife Office, U.S. Fish and Wildlife Service in collaboration with Oregon Department of Fish and Wildlife: 63 pps.
- Weaver, T. M., and R. G. White. 1985. Coal Creek fisheries monitoring study, No. III. Final Report. Montana Cooperative Fisheries Research Unit, Bozeman, Montana.
- Wilcox, T. M., K. S. McKelvey, M. K. Young, A. J. Sepulveda, B. B. Shepard, S. F. Jane, A. R. Whiteley, W. H. Lowe, and M. K. Schwartz. 2016. Understanding environmental DNA detection probabilities: A case study using a stream-dwelling char Salvelinus fontinalis.

Stream	Reach	Date	Species	Redd ID	Easting	Northing	LN (cm)	WD (cm)	Description
Clackamas River	4	9/12/2018	BT	B1JF	588570	4971205	120	55	clear p/m, bright gravel 90% certainty
Clackamas River	4	9/12/2018	BT	B3BP	588567	4971229	70	50	Bt redd, 60%
Clackamas River	4	10/23/2018	вт	E5JF	587801	4972495	220	110	Definite redd, bright, maybe older, some rocks with algae
Last Creek	1	9/25/2018	вт	C8JF	589237	4980427	70	60	50%, def digging, small mound, clear pocket, almost a test dig
Pinhead Creek	1	9/10/2018	BT	B1SS	588193	4981489	140	65	Clear p/m 95% certain
Pinhead Creek	1	9/10/2018	BT	B2SS	588223	4981459	250	120	Clear digging, 75%
Pinhead Creek	1	9/10/2018	вт	B3SS	588417	4981130	170	90	clear p/m, some fines, bright, 80%
Pinhead Creek	1	9/10/2018	BT	B1JW	588422	4980928	150	110	good-great
Pinhead Creek	1	9/24/2018	BT	C3JF	588377	4980664	170	90	100% big mound
Pinhead Creek	1	9/24/2018	BT	C3SS	588415	4980956	130	100	100% nice redd
Pinhead Creek	1	9/24/2018	ВТ	C7MC	588496	4989327	100	65	50-75%, at first look an old redd, not bright
Pinhead Creek	1	9/24/2018	BT	C1BP	588297	4981389	180	90	bt redd under log
Pinhead Creek	1	9/24/2018	BT	C2BP	588374	4981312	190	110	clear p/m
Pinhead Creek	1	9/24/2018	BT	C3BP	588378	4981089	130	90	Bt, clear p/m
Pinhead Creek	1	9/24/2018	BT	C4BP	588416	4980938	120	70	
Pinhead Creek	1	9/24/2018	BT	C5BP	588416	4980845	170	70	clear p/m
Pinhead Creek	1	9/24/2018	BT	C2JF	588395	4981078	200	90	100%, nice mound, 2 BT!
Pinhead Creek	1	9/24/2018	BT	C2CA	588109	4981654	140	50	100%
Pinhead Creek	1	9/24/2018	BT	C1CN	588169	4981616	150	100	100%
Pinhead Creek	1	9/24/2018	BT	C1JF	588306	4981387	240	120	70% bt gravel, big redd
Pinhead Creek	1	9/24/2018	BT	C4CA	588198	4981497	100	75	100%
Pinhead Creek	1	9/24/2018	BT	C2CN	588099	4981719	100	100	100%
Pinhead Creek	1	9/24/2018	BT	C1SS	588195	4981376	150	120	100% nice redd
Pinhead Creek	1	9/24/2018	BT	C3CA	588194	4981528	100	60	100%
Pinhead Creek	1	9/24/2018	BT	C9CA	588448	4980989	100	100	100%
Pinhead Creek	1	9/24/2018	BT	C5CA	588228	4981442	175	100	50%, digging
Pinhead Creek	1	9/24/2018	BT	C6CA	588267	4981438	180	100	100%
Pinhead Creek	1	9/24/2018	BT	C7CA	588319	4981407	100	80	100%
Pinhead Creek	1	9/24/2018	BT	C8CA	588386	4981342	80	50	50/50 small
Pinhead Creek	1	9/24/2018	BT	C10CA	588420	4980671	200	150	100%
Pinhead Creek	1	9/24/2018	BT	C11CA	588488	4980539	150	50	100%
Pinhead Creek	1	9/24/2018	BT	C1CA	588109	4981663	200	100	100%
Pinhead Creek	1	9/24/2018	BT	C3CN	588100	4981719	150	100	100%
Pinhead Creek	1	10/9/2018	BT	D6BP	588479	4980438	140	70	perfect BT redd
Pinhead Creek	1	10/9/2018	ВТ	D5SS	588360	4981367	170	130	small redd, test dig?, good mound, >50%
Pinhead Creek	1	10/9/2018	BT	D7SS	588411	4981092	130	90	nice, p/m, clean gravel
Pinhead Creek	1	10/9/2018	BT	D9SS	588487	4980492	120	60	p/m, 75%, flattened
Pinhead Creek	1	10/9/2018	BT	D5BP	588439	4980429	100	60	50%bt
Pinhead Creek	1	10/9/2018	BT	D3BP	588201	4981410	190	130	possible chk redd
Pinhead Creek	1	10/9/2018	BT	D4BP	588370	4981125	110	70	bt redd

Appendix I. Bull Trout and Chinook Salmon redd count data from the upper Clackamas River basin, 2018. First of 3 pages.

Stream	Reach	Date	Species	Redd ID	Easting	Northing	LN (cm)	WD (cm)	Description
Pinhead Creek	1	10/9/2018	ВТ	D10SS	588483	4980341	160	100	Nice redd
Pinhead Creek	1	10/9/2018	ВТ	D11SS	588101	4981722	160	100	Nice redd, called on 10/10, ds of bridge
Pinhead Creek	1	10/9/2018	вт	D2MD	588360	4981172	90	60	bt redd
Pinhead Creek	1	10/9/2018	BT	D3MD	588395	4981006			under log, no dimensions
Pinhead Creek	1	10/9/2018	ВТ	D4MD	588489	4980342	110	65	against log
Pinhead Creek	1	10/9/2018	BT	D2JF	588269	4981247	150	120	80%
Pinhead Creek	1	10/9/2018	ВТ	D8SS	588430	4980971	120	70	nice redd, underlog, relat. Fine gravel
Pinhead Creek	1	10/23/2018	BT	E4JF	588496	4980334	170	100	80% BT redd
Pinhead Creek	1	10/23/2018	BT	E1JW	588424	4980978	75	35	BT redd
Pinhead Creek	1	10/23/2018	BT	E8SS	588528	4980334	130	80	BT redd
Pinhead Creek	1	10/23/2018	BT	E7SS	588415	4980956	170	55	SW called test, changed to BT redd, big pocket, clear dig, flat mound
Pinhead Creek	1	10/23/2018	BT	E6SS	588310	4981200	105	40	small, P/m present
Pinhead Creek	1	10/23/2018	BT	E3SS	588202	4981403	110	30	clear dig, p/m, BT redd
Pinhead Creek	1	10/23/2018	BT	E3JF	588437	4980955	120	70	70% BT redd
Pinhead Creek	1	10/23/2018	BT	E5SS	588207	4981355	170	80	smaller gravel than nearby CHK redd, small, P/M present
Pinhead Creek	1	11/6/2018	BT	F3SS	588483	4980338	80	45	bt redd, same pt as F4ss
Pinhead Creek	1	11/6/2018	BT	F1SS	588377	4980676	80	35	bt redd
Pinhead Creek	1	11/6/2018	BT	F15BP	588406	4981027	110	80	bt redd
Pinhead Creek	1	11/6/2018	BT	F6JF	588498	4980335	120	50	Bt under debris
Pinhead Creek	1	11/6/2018	BT	F5JF	588413	4980629	100	70	Bt redd
Pinhead Creek	1	11/6/2018	BT	F4SS	588483	4980339	160	60	bt redd, same pt as F3ss
Pinhead Creek	2	9/11/2018	ВТ	B4SS	588644	4979543	170	75	obvious fish dig, mound with lots of sand, 50-75% certain
Pinhead Creek	2	9/11/2018	BT	B1BP	588915	4978854	150	110	Big redd
Pinhead Creek	2	9/11/2018	BT	B8SS	588915	4978884	160	100	nice redd, 95%
Pinhead Creek	2	9/11/2018	BT	B7SS	588861	4978954	120	50	clear p/m, small, 90% certain
Pinhead Creek	2	9/11/2018	BT	B6SS	588837	4979269	100	40	test dig
Pinhead Creek	2	9/25/2018	BT	C4JF	588582	4980095	160	80	70% p/m
Pinhead Creek	2	9/25/2018	BT	C7BP	588634	4979552	150	100	northing wrong added 9, clear p/m
Pinhead Creek	2	9/25/2018	ВТ	C7SS	588857	4979057	70	40	small redd, small mound, definite digging, 50-75%
Pinhead Creek	2	9/25/2018	BT	C6SS	588838	4979011	90	60	nice small redd, 80-90%
Pinhead Creek	2	9/25/2018	ВТ	C5SS	588886	4978950	90	45	small, lots of fines, decent mound, 50-75%
Pinhead Creek	2	9/25/2018	BT	C4SS	588945	4978806	85	55	small, clear digging, 75%
Pinhead Creek	2	9/25/2018	ВТ	C5JF	588602	4979693	100	60	60%, bt near redd, clear bright mound

Appendix I. Continued, 2 of 3 pages.

Stream	Reach	Date	Species	Redd ID	Easting	Northing	LN (cm)	WD (cm)	Description
Pinhead Creek	2	9/25/2018	ВТ	C5JF	588602	4979693	100	60	60%, bt near redd, clear bright mound
Pinhead Creek	2	10/8/2018	BT	D1BP	588631	4979663	200	100	Possible chinook redd
Pinhead Creek	2	10/8/2018	BT	D4SS	588908	4978862	130	50	nice redd, no algae on mound gravel, next to B1BP
Pinhead Creek	2	10/8/2018	BT	D3SS	588942	4978802	90	60	nice small redd
Pinhead Creek	2	10/8/2018	вт	D2SS	589235	4977920	100	55	possible test dig, p/m present 50%
Pinhead Creek	2	10/8/2018	вт	D1JF	588738	4979357	150	80	small redd, some larger rocks 60%
Pinhead Creek	2	10/8/2018	BT	D1SS	589230	4977904	100	80	nice redd
Pinhead Creek	2	10/8/2018	BT	D2BP	588631	4979663	110	60	bull trout redd, same coords as D1BP
Pinhead Creek	2	10/22/2018	BT	E1SS	588571	4980251	90	50	Clear p/m, 75%
Pinhead Creek	2	10/22/2018	BT	E2CA	588855	4978965	150	50	nice redd
Pinhead Creek	2	10/22/2018	BT	E1CA	588638	4979564	100	90	nice redd
Pinhead Creek	2	11/5/2018	BT	F4JF	588853	4979241	140	80	bt redd, 70%
Clackamas River	4	9/12/2018	СНК	B2BP	588508	4971376	65	50	CHK test dig; small dig, large substrate, <50% certainty of being a redd
Clackamas River	4	9/12/2018	CHK	B9SS	588521	4971321	160	120	CHK test dig
Pinhead Creek	1	10/9/2018	СНК	D1MD	588370	4981395			CHK redd
Pinhead Creek	1	10/9/2018	СНК	D7BP	588195	4981376	220	180	chinook redd on top of C1SS
Pinhead Creek	1	10/23/2018	СНК	E1JF	588395	4981120	240	120	CHK redd
Pinhead Creek	1	10/23/2018	СНК	E2JF	588407	4981038	150	60	50% CHK, small mound, definite digging line
Pinhead Creek	1	10/23/2018	CHK	E2SS	588168	4981576	150	30	CHK test dig
Pinhead Creek	1	10/23/2018	CHK	E4SS	588207	4981355	300	100	CHK redd
Pinhead Creek	1	10/23/2018	CHK	E2JW	588086	4981677	340	140	CHK test dig?
Pinhead Creek	1	11/6/2018	CHK	F7JF	588091	4981677	170	130	chk redd
Pinhead Creek	1	11/6/2018	CHK	F8JF	588088	4981677	300	240	chk redd, 1 adult on
Pinhead Creek	1	11/6/2018	СНК	F9JF	588200	4981364	300	150	chk redd
Pinhead Creek	1	11/6/2018	СНК	F9aJF	588207	4981355	350	200	Superimposed on Bt redd E5SS
Pinhead Creek	1	11/6/2018	CHK	F10JF	588243	4981303	150	150	chk redd
Pinhead Creek	1	11/6/2018	CHK	F11JF	588266	4981262	150	190	chk redd
Pinhead Creek	1	11/6/2018	CHK	F12JF	588367	4981113	200	140	chk redd
Pinhead Creek	1	11/6/2018	CHK	F13JF	588407	4981005	300	220	chk redd, 1 adult on
Pinhead Creek	1	11/6/2018	CHK	F14JF	588438	4980893	270	130	chk redd
Pinhead Creek	1	11/6/2018	СНК	F2BP	588505	4980334	550	140	chk on redd, actively spawning
Pinhead Creek	1	11/6/2018	СНК	F3BP	588523	4980328	400	80	chk redd
Pinhead Creek	1	11/6/2018	СНК	F4BP	588066	4981664	400	180	2 chk on redd
Pinhead Creek	1	11/6/2018	СНК	F5BP	588199	4981500	180	90	chk redd
Pinhead Creek	1	11/6/2018	СНК	F6BP	588199	4981479	110	80	chk redd, big cobble

Appendix I. Continued, 3 of 3 pages.

Appendix II. Annual detection duration of adult PIT-tagged Bull Trout (i.e., age-5 and older) in Pinhead Creek, during or near the spawning period, from 2011 through 2018. Duration was calculated as the difference in days (d) between the last and first dates of detection; the value "0" means the adult was detected on a single day. Sex was determined in 2017 and 2018 either in the weir trap or video chute. This is the first of 5 table pages.

Transl	ocation				Dete	ection D	uration i	n Pinhe	ad Creel	k (d)	
Location	Year	TL (mm)	Sex	2011	2012	2013	2014	2015	2016	2017	2018
Clackamas 2	2011	450	NA	0		33					
Clackamas 2	2011	540	NA	0							
Clackamas 2	2011	580	NA	0							
Clackamas 2	2011	510	NA	1							
Clackamas 2	2011	470	NA	3		0					
Clackamas 1	2011	450	NA	6							
Clackamas 2	2011	470	NA	17	55	3					
Clackamas 2	2011	510	NA	21							
L. Clackamas	2011	470	NA	22	24						
L. Clackamas	2011	640	NA	25							
Clackamas 1	2011	650	NA	25							
Clackamas 2	2011	550	NA	26	21	36					
L. Clackamas	2011	601	NA	27							
L. Clackamas	2011	590	NA	31							
Clackamas 2	2011	460	NA	39		23					
L. Clackamas	2011	535	NA	48							
L. Clackamas	2011	575	NA	59							
Clackamas 2	2011	420	NA	70							
Clackamas 2	2011	470	NA	78							
Clackamas 2	2011	400	NA		20						
Clackamas 1	2011	360	NA		34						
Clackamas 1	2011	340	NA		35						
Clackamas 2	2011	540	NA		35						
Clackamas 1	2011	370	NA			0					
Last Creek	2011	212	NA			64	0	5			
Last Creek	2011	305	NA			68	93	17	28		
Last Creek	2011	195	NA				0	73			
Last Creek	2011	270	NA				0				
Last Creek	2011	246	NA				4				
Last Creek	2011	170	NA				35				
Last Creek	2011	170	NA				48				
Last Creek	2011	175	NA				84				
Pinhead Creek	2011	118	NA					17	28		
Clackamas 2	2012	520	NA	NA	0			0			
Clackamas 2	2012	536	NA	NA	12						
Clackamas 2	2012	555	NA	NA	28	45	0				
Clackamas 2	2012	611	NA	NA	31	23					
Clackamas 2	2012	620	NA	NA	37						
Clackamas 2	2012	615	NA	NA	40						
Clackamas 2	2012	586	NA	NA	47		9				
Clackamas 2	2012	633	NA	NA	47						
Clackamas 2	2012	628	NA	NA	49						
Clackamas 2	2012	614	NA	NA	51						

Transl	location		_		Dete	ection D	uration i	n Pinhe	ad Creel	k (d)	
Location	Year	TL (mm)	Sex	2011	2012	2013	2014	2015	2016	2017	2018
Clackamas 2	2012	376	NA	NA		0	39				
Clackamas 2	2012	645	NA	NA		0					
Clackamas 2	2012	350	NA	NA		7					
Clackamas 2	2012	335	NA	NA		11	0	19			
Clackamas 2	2012	381	NA	NA		11		1			
Clackamas 2	2012	345	NA	NA		34					
Clackamas 2	2012	350	NA	NA		45					
Clackamas 2	2012	325	F	NA			0		4		3
Clackamas 2	2012	537	NA	NA			0				
Clackamas 1	2012	376	NA	NA			2				
Clackamas 2	2012	354	NA	NA			5	5			
Clackamas 2	2012	317	NA	NA			35				
Clackamas 2	2012	325	NA	NA			60	11			
Last Creek	2012	184	NA	NA				8			
Pinhead Creek	2012	143	М	NA				10	30	26	
Clackamas 1	2012	290	NA	NA				11			
Pinhead Creek	2012	144	NA	NA				25	12		
Last Creek	2012	174	NA	NA				31	24	44	4
Pinhead Creek	2012	158	NA	NA				39	14		
Pinhead Creek	2012	130	М	NA					0	0	30
Pinhead Creek	2012	150	NA	NA					0		
Clackamas 2	2012	368	NA	NA					0		
Pinhead Creek	2012	145	М	NA					21	5	
Pinhead Creek	2012	99	NA	NA					32		
Pinhead Creek	2012	92	М	NA					39	7	
Pinhead Creek	2012	89	М	NA					47	5	
Pinhead Creek	2012	133	NA	NA					55		
Pinhead Creek	2012	129	NA	NA					71		
Pinhead Creek	2012	109	NA	NA					88		
Pinhead Creek	2012	111	F	NA						9	0
Clackamas 1	2013	530	NA	NA	NA	0					
Clackamas 1	2013	600	NA	NA	NA	19					
Clackamas 1	2013	610	NA	NA	NA	26	3				
Clackamas 1	2013	357	NA	NA	NA		0				
L. Clackamas	2013	358	NA	NA	NA		0				
L. Clackamas	2013	325	NA	NA	NA		5				
Clackamas 1	2013	340	NA	NA	NA		7				
Clackamas 1	2013	330	NA	NA	NA		8				
Clackamas 1	2013	367	NA	NA	NA		9	1	0		
L. Clackamas	2013	376	NA	NA	NA		10				
Clackamas 1	2013	396	NA	NA	NA		13				
Clackamas 1	2013	342	NA	NA	NA		21	18	26		
L. Clackamas	2013	332	NA	NA	NA		23				
Clackamas 1	2013	390	NA	NA	NA		25	28			
Clackamas 1	2013	419	NA	NA	NA		41				

Appendix II. Continued, 2 of 5 pages.

Transl	location		_		Dete	ection D	uration i	n Pinhe	ad Creel	k (d)	
Location	Year	TL (mm)	Sex	2011	2012	2013	2014	2015	2016	2017	2018
L. Clackamas	2013	321	F	NA	NA			0		9	
L. Clackamas	2013	249	NA	NA	NA			0			
L. Clackamas	2013	285	NA	NA	NA			0			
Clackamas 1	2013	310	NA	NA	NA			0			
Clackamas 1	2013	405	NA	NA	NA			0			
Clackamas 1	2013	405	NA	NA	NA			0			
Clackamas 1	2013	285	NA	NA	NA			2			
Clackamas 1	2013	320	NA	NA	NA			2			
Clackamas 1	2013	325	F	NA	NA			4	10	9	0
Clackamas 1	2013	363	NA	NA	NA			5			
Clackamas 1	2013	261	NA	NA	NA			8			
Clackamas 1	2013	407	NA	NA	NA			9			
L. Clackamas	2013	258	NA	NA	NA			10			
L. Clackamas	2013	271	NA	NA	NA			10			
L. Clackamas	2013	354	NA	NA	NA			18			
Clackamas 1	2013	410	NA	NA	NA			23			
L. Clackamas	2013	389	NA	NA	NA			26			
Clackamas 1	2013	362	NA	NA	NA			29			
Last Creek	2013	240	NA	NA	NA			30			
L. Clackamas	2013	277	NA	NA	NA			31			
Clackamas 1	2013	384	NA	NA	NA			41			
Clackamas 1	2013	381	F	NA	NA			55	49	25	
L. Clackamas	2013	364	NA	NA	NA			65			
Clackamas 1	2013	306	NA	NA	NA			87	1		
Last Creek	2013	156	F	NA	NA				0	71	
Last Creek	2013	145	NA	NA	NA				0		
Pinhead Creek	2013	165	NA	NA	NA				0		
Pinhead Creek	2013	130	NA	NA	NA				3		
Last Creek	2013	188	NA	NA	NA				9		
Pinhead Creek	2013	158	F	NA	NA				11	6	3
Pinhead Creek	2013	134	NA	NA	NA				15		
Last Creek	2013	170	F	NA	NA				17	8	4
Last Creek	2013	170	М	NA	NA				17	32	18
Pinhead Creek	2013	168	NA	NA	NA				20	27	
Last Creek	2013	208	F	NA	NA				22	22	1
Pinhead Creek	2013	161	F	NA	NA				24	8	4
Last Creek	2013	173	М	NA	NA				26	28	
Last Creek	2013	139	М	NA	NA				27	17	
Pinhead Creek	2013	187	NA	NA	NA				27	35	43
Pinhead Creek	2013	160	NA	NA	NA				28		
Last Creek	2013	200	М	NA	NA				30		6
Pinhead Creek	2013	152	М	NA	NA				31	30	21
Last Creek	2013	136	М	NA	NA				32	28	37
Last Creek	2013	149	М	NA	NA				33	11	
Last Creek	2013	145	М	NA	NA				34	1	14

Appendix II. Continued, 3 of 5 pages.

Transl	location		_		Dete	ection D	uration i	in Pinhe	Pinhead Creek (d)					
Location	Year	TL (mm)	Sex	2011	2012	2013	2014	2015	2016	2017	2018			
Last Creek	2013	120	NA	NA	NA				35					
Pinhead Creek	2013	187	NA	NA	NA				36					
Last Creek	2013	130	NA	NA	NA				39					
Clackamas 1	2013	315	NA	NA	NA				39					
Last Creek	2013	200	NA	NA	NA				42					
Last Creek	2013	176	M	NA	NA				43	51	25			
Last Creek	2013	136	M	NA	NA				45	33				
Last Creek	2013	184	M	NA	NA				47	1				
Last Creek	2013	140	NA	NA	NA				47					
Last Creek	2013	153	NA	NA	NA					0				
Last Creek	2013	136	M	NA	NA					4				
Pinhead Creek	2013	106	F	NA	NA					6				
Last Creek	2013	150	F	NA	NA					22				
Last Creek	2013	162	M	NA	NA					28				
Pinhead Creek	2013	102	M	NA	NA					29				
Pinhead Creek	2013	138	F	NA	NA					48	8			
Last Creek	2013	202	F	NA	NA					91	46			
Clackamas 1	2014	510	NA	NA	NA	NA	0	2	3					
Clackamas 1	2014	425	NA	NA	NA	NA	8							
Clackamas 1	2014	490	NA	NA	NA	NA	10	38						
Clackamas 1	2014	483	NA	NA	NA	NA	24							
Clackamas 1	2014	445	NA	NA	NA	NA		0	4					
Clackamas 1	2014	394	F	NA	NA	NA		2	7	5				
Clackamas 1	2014	432	NA	NA	NA	NA		12						
Clackamas 1	2014	360	NA	NA	NA	NA		15						
Clackamas 1	2014	366	NA	NA	NA	NA		45	0					
Clackamas 1	2014	380	NA	NA	NA	NA			5					
Clackamas 1	2014	372	NA	NA	NA	NA			6					
Clackamas 1	2014	238	NA	NA	NA	NA			8					
Clackamas 1	2014	270	NA	NA	NA	NA			10					
Clackamas 1	2014	298	M	NA	NA	NA			18	22	4			
Clackamas 1	2014	315	NA	NA	NA	NA			20	0				
Clackamas 1	2014	372	M	NA	NA	NA			48	41	30			
Berry Creek	2014	147	NA	NA	NA	NA				0				
Berry Creek	2014	151	M	NA	NA	NA				1	30			
Clackamas 1	2014	287	F	NA	NA	NA				2				
Clackamas 1	2014	195	M	NA	NA	NA				3	34			
Clackamas 1	2014	328	NA	NA	NA	NA				9				
Clackamas 1	2014	134	M	NA	NA	NA				30	17			
Clackamas 1	2014	358	F	NA	NA	NA					12			
Clackamas 1	2015	561	NA	NA	NA	NA	NA	0						
Clackamas 1	2015	510	F	NA	NA	NA	NA	24		10	6			
Clackamas 1	2015	600	NA	NA	NA	NA	NA	46						
Clackamas 1	2015	568	NA	NA	NA	NA	NA	58	24					
Clackamas 1	2015	379	M	NA	NA	NA	NA		5	24	17			
Clackamas 1	2015	358	M	NA	NA	NA	NA		12	20				
Clackamas 1	2015	342	M	NA	NA	NA	NA		15	25	7			

Appendix II. Continued, 4 of 5 pages.

Transl	ocation		_	Detection Duration in Pinhead Creek (d)							
Location	Year	TL (mm)	Sex	2011	2012	2013	2014	2015	2016	2017	2018
Clackamas 1	2015	411	NA	NA	NA	NA	NA		20		
Clackamas 1	2015	345	NA	NA	NA	NA	NA		21		
Clackamas 1	2015	353	F	NA	NA	NA	NA			0	0
Clackamas 1	2015	242	F	NA	NA	NA	NA			3	
Clackamas 1	2015	409	NA	NA	NA	NA	NA			4	1
Clackamas 1	2015	396	NA	NA	NA	NA	NA			4	
Clackamas 1	2015	341	F	NA	NA	NA	NA			10	
Clackamas 1	2015	414	М	NA	NA	NA	NA			10	
Clackamas 1	2015	301	NA	NA	NA	NA	NA			13	9
Clackamas 1	2015	393	Μ	NA	NA	NA	NA			16	
Clackamas 1	2015	333	М	NA	NA	NA	NA			17	2
Clackamas 1	2015	331	F	NA	NA	NA	NA			44	1
Berry Creek	2015	194	F	NA	NA	NA	NA				0
Clackamas 1	2015	209	М	NA	NA	NA	NA				0
Clackamas 1	2015	241	F	NA	NA	NA	NA				0
Clackamas 1	2015	267	NA	NA	NA	NA	NA				0
Clackamas 1	2015	308	М	NA	NA	NA	NA				0
Clackamas 1	2015	352	М	NA	NA	NA	NA				0
Clackamas 1	2016	575	М	NA	NA	NA	NA	NA	25		40
Clackamas 1	2016	535	NA	NA	NA	NA	NA	NA	26		
Clackamas 1	2016	560	NA	NA	NA	NA	NA	NA	26		
Clackamas 1	2016	372	NA	NA	NA	NA	NA	NA		0	
Clackamas 1	2016	386	М	NA	NA	NA	NA	NA		2	
Clackamas 1	2016	322	F	NA	NA	NA	NA	NA		5	5
Clackamas 1	2016	256	М	NA	NA	NA	NA	NA			0
Clackamas 1	2016	346	М	NA	NA	NA	NA	NA			0
Clackamas 1	2016	443	F	NA	NA	NA	NA	NA			1
Clackamas 1	2016	229	F	NA	NA	NA	NA	NA			4
Clackamas 1	2016	350	F	NA	NA	NA	NA	NA			4
Clackamas 1	2016	357	F	NA	NA	NA	NA	NA			4
Clackamas 1	2016	304	М	NA	NA	NA	NA	NA			6
Clackamas 1	2016	230	М	NA	NA	NA	NA	NA			16
Clackamas 1	2016	314	М	NA	NA	NA	NA	NA			16
Clackamas 1	2016	340	М	NA	NA	NA	NA	NA			16
Clackamas 1	2016	267	М	NA	NA	NA	NA	NA			47
Pinhead Creek	2017	536	F	NA	NA	NA	NA	NA	NA	0	
Pinhead Creek	2017	568	F	NA	NA	NA	NA	NA	NA	0	
Pinhead Creek	2017	575	F	NA	NA	NA	NA	NA	NA	7	5
Pinhead Creek	2017	605	F	NA	NA	NA	NA	NA	NA	9	4
Pinhead Creek	2017	459	F	NA	NA	NA	NA	NA	NA	14	28
Pinhead Creek	2017	493	М	NA	NA	NA	NA	NA	NA	22	23
Pinhead Creek	2018	700	F	NA	NA	NA	NA	NA	NA	NA	0
Pinhead Creek	2018	494	Μ	NA	NA	NA	NA	NA	NA	NA	5
Pinhead Creek	2018	575	F	NA	NA	NA	NA	NA	NA	NA	5
Pinhead Creek	2018	600	F	NA	NA	NA	NA	NA	NA	NA	10
Pinhead Creek	2018	585	М	NA	NA	NA	NA	NA	NA	NA	18

Appendix II. Continued, 5 of 5 pages.

Appendix III. A comparison of translocated Bull Trout detected as adults (age-5 and older) in Pinhead Creek and all fish translocated from the Metolius River basin to the Clackamas River basin by release location and age-at-release. Three ratios were calculated: 1) the number adults detected in Pinhead Creek for each combination of location and age-class to the number of translocated fish for each combination of location and age-class (Ad:Trans); 2) the number adults detected in Pinhead Creek for each age-class and location combination to the total number (N=215) of detected adults (Ad:Total Ad); and 3) the number translocated fish for each age-class and location combination to the total number (N=2,836) of translocated fish (Trans:Total Trans). Age-class-at-release was defined by size-at-age studies and were as follows: age-1, 70-115 mm; age-2, 116-210 mm; age-3, 211-320 mm; age-4, 321-400 mm; and age-5 and older, >400 mm.

	Age-Class	Adults in Pinhead Creek				Translocated				Ratios		
Release Location		N	Mean	Min	Max	N	Mean	Min	Max	Ad:Trans	Ad:Total Ad	Trans:Total Trans
Pinhead Creek	1	7	101	89	111	333	94	74	115	0.02	0.03	0.12
	2	20	150	118	187	320	146	116	205	0.06	0.09	0.11
	3	0	NA	NA	NA	1	215	215	215	0.00	0.00	0.00
Last Creek	1	0	NA	NA	NA	162	98	70	115	0.00	0.00	0.06
	2	30	165	120	208	336	155	116	208	0.09	0.14	0.12
	3	5	255	212	305	24	247	212	305	0.21	0.02	0.01
L. Clackamas River	3	5	268	249	285	10	270	225	310	0.50	0.02	0.00
	4	8	352	321	389	23	357	321	400	0.35	0.04	0.01
	≥5	6	568	470	640	16	572	410	642	0.38	0.03	0.01
Clackamas River 1	2	3	179	134	209	103	162	118	210	0.03	0.01	0.04
	3	23	281	229	320	152	279	214	320	0.15	0.11	0.05
	4	42	360	322	396	146	357	321	400	0.29	0.20	0.05
	≥5	27	491	405	650	58	479	404	650	0.47	0.13	0.02
Clackamas River 2	3	1	317	317	317	4	276	250	317	0.25	0.00	0.00
	4	11	355	325	400	37	362	324	400	0.30	0.05	0.01
	≥5	24	545	420	645	43	540	420	650	0.56	0.11	0.02
Berry Creek	1	0	NA	NA	NA	249	93	74	115	0.00	0.00	0.09
	2	3	164	147	194	316	148	116	206	0.01	0.01	0.11
	3	0	NA	NA	NA	3	247	216	291	0.00	0.00	0.00
Clackamas River 5	1	0	NA	NA	NA	429	88	70	115	0.00	0.00	0.15
	2	0	NA	NA	NA	70	135	116	182	0.00	0.00	0.02
	3	0	NA	NA	NA	1	218	218	218	0.00	0.00	0.00

